Go to ResearchGate

March 2012

Advanced Gravitational Wave Detectors

D. G. Blair, University of Western Australia, Perth
E. J. Howell, University of Western Australia, Perth
L. Ju, University of Western Australia, Perth
C. Zhao, University of Western Australia, Perth


After decades of research, physicists now know how to detect Einstein's gravitational waves. Advanced gravitational wave detectors, the most sensitive instruments ever created, will be almost certain of detecting the births of black holes throughout the Universe. This book describes the physics of gravitational waves and their detectors. The book begins by introducing the physics of gravitational wave detection and the likely sources of detectable waves. Case studies on the first generation of large scale gravitational wave detectors introduce the technology and set the scene for a review of the experimental issues in creating advanced detectors in which the instrument's sensitivity is limited by Heisenberg's uncertainty principle. The book covers lasers, thermal noise, vibration isolation, interferometer control and stabilisation against opto-acoustic instabilities. This is a valuable reference for graduate students and researchers in physics and astrophysics entering this field.

Reviews & endorsements

"This book is not only a monograph on advanced gravitational wave detectors and the astrophysical phenomena they will explore, it also contains a pedagogically fine introduction to the field of gravitational wave science. I recommend it to any budding or mature scientist or engineer who wants an overview of this exciting field and where it is going."

Kip. S. Thorne, Feynman Professor of Theoretical Physics, Emeritus, California Institute of Technology

"Almost 100 years after Einstein introduced his Theory of General Relativity, we are finally on the threshold of making direct detections of gravitational waves ... Advanced Gravitational Wave Detectors gives us an up-to-date view of the science and techniques for making the first detections and then developing yet more sensitive future detectors ... This comprehensive review, written by experts in gravitational waves physics, covers these topics in depth and will serve as a very good introduction for students, while at the same time, being a valuable resource for practitioners in the field."

Barry C. Barish, Linde Professor of Physics Emeritus, California Institute of Technology
Advanced Gravitational Wave Detectors